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LUNAR CAPTURE ORBITS, A METHOD OF
CONSTRUCTING EARTH MOON TRAJECTORIES
AND THE LUNAR GAS MISSION

E. A. Belbruno*
Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

Abstract

A method
from che
existence

is described to construcct trajectories
Earch to the Moon which utilizes the
of Lunar capture orbits and the

concept
of ‘stabilicy  boundary’. These orbits are
balliscic and represent a new family of
trajectories. They go into orbit about the Moon
from a suicable position about the Earcth with no

required cthruscing. This mechod is applied to a
mission being studied at JPL called Lunar GAS (Get
Away Special). Other applications are discussead.

1. Introduction

We describe a method of constructing
trajectories from the Earth to the Moon which are
ballistically captured. That is, they go into
orbit about the Moon with no required thrusting.
The amount of time they stay in orbit about the
Moon depends on their relative stabilicy. 1In
general, they will orbit the Moon for several
cycles and then leave the Moon's vicinity. These
Lunar capture orbits starc from a point P about the
Earch and go to a desired point Q about the Moon.
The precise position of P and the necessary
velocity there must be determined in order to reach
Q. In order for the orbit at Q to be balliscically
captured, Q must be at a critical position from the
Moon which is dependent on the approach direccion.
At this position, the gravitational forces of the
Earth and Hoon tend to cancel. Thus, the orbit can
be pulled into the Moon's dynamic influence wich
negligible force. 1In general, there is a complex
region about the Hoon that Q belongs to where the
gravitational forces of the Earth and Moon tend to
balance. We call this the ’‘stabilicy boundary’. A
more precise formulation of the stability boundary
is given in Section 2 and in the Appendix. For
brevity, this is only briefly presented. The
approach taken for the construction of Lunar
capture orbits uses concepts from the fields of
dynamical systems asd stabilicy theory of
Hamiltonian systems(l' ) This is because of the
delicate nature of these orbits which is partially
addressed by results in these fields.z's'g) The
inclusion of thrusting along these orbits in order
to achieve capture conditions is not covered in
this paper. In this case, optimization techniques
may be useful. A Newton's algorithm is derived in
the Appendix which will yield the conditions at P
necessary in order to achieve capture conditions at
Q given the desired approach direction
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Lunar capture orbits are well suited for
applications to S/C with low thrust. If the thrusc
level is low, then it is desirable to approach the
Moon in such way so as to minimize the force
necessary in order to put the S/C into Lunar orbit.
A Lunar capture orbit will be an ideal case since
no thruscing force at all is required. In realicy,
of course, this ideal case will not be realized,
but something close should be.

In applications, it is desirable to construct
Earth Moon trajectories from low Earcth orbit to low
Lunar orbit. If we assume low thrusc, then che S/C
will slowly spiral outwards and eventually reach
the point P. The rate of the spiral radial
increase depends on the cthruscing regime. The
thrust can in general be adjusted to achieve the
necessary velocity at P to match cthe i{nicial
capture orbit conditions. When the S/C reaches Q,
the thruscting can be resumed in order to spiral
down to low lunar orbirc. The complete Earcth Moon
trajectory can therefore be viewed in three parts:
The Earch spiral phase to P, «tlie Lunar capture
orbit, or linking orbit, from P to Q, and the Lunar
spiral phase from Q to low Lunar orbic. This is
illuscracted in Figure 1. 1In this figure the S/C is
captured at Q above the norch Lunar pole. This
will be compatible with the requirements for the
Lunar Gas mission.

The orbit construction above is apg}iﬁd to the
Lunar Gas mission being studied at JPL. Because
this mission is described in (1l1), we describe it
only briefly. The Lunar GAS S/C is designed to be
ejected from a Get Away Special cannister aboard
the shuttle from a low Earth orbit at about 300 km

alcitude. Upon ejection, the solar panels are
extended. The S/C uses solar electric ion propul-
sion where the ionizing gas is Xenon. The thrust

EARTH SPRIAL

CAPTURE
ORBIT
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arzh Moon Trajectorv




is initially about 706 Newtons,
rate 1is 9.59 x 10™' kg/s.
approximately 150 kg.

and the mass flow
The S/C has a mass of
The S/C is spin stabilized,

and spins perpendicular to the thrust direction.
As 1Is shown in Figure 2, 1in the outgoing Earch
spiral the thrust vector is first in the anti-Sun
direction, and in the orbit plane. The thrust
remains on for a 90° arc which is centered at cthe
+ SUN
TIMETICS

1 DAY

Figure 2. Earch Spiral Thrus:zia

point on the spiral arc where the tangent vector is
parallel <co the projection of the Sun direction on
the orbit plane. At the end of this arc the thrusc
stops, and the S/C coasts for 90°. It then resumes
thrusting in the Sun direction for another 90° arc
at the end of which it coasts for 900. etc. By
thrusting in this fashion, the S/C performs several
thousand spirals where it eventually
critical position P in about 2 years.

is about 200,000 km from the Earch. The cthrust is
adjusted so that at P the velocity matches the
initial condition for the Lunar capture orbit to Q
over the norcth Lunar pole. The capture orbit has a
duration of about 16 days. If no thrusting were
done at Q, cthe capture orbit would go into orbit
about the Moon, which will, in general, be unstable
as indicated above. However, a relatively stable
permanent capture may be possible. In order to
stabilize it, the thruscting can be resumed in a way

reaches a
The point P

analogous to the Earth spiral, but now the thrust
vector is directed 1in an opposite way so that
deacceleration occurs. The Lunar spiral descends
to 100 km altitude and takes about 150 days. Lunar
capture orbits suitable for the Lunar GAS mission
are constructed 1in Section 2. As seen in this
section, they have an interesting behavior, and the
Lagrange point, L;, plays a role in their dynamics.
The spiral orbits are described in Seccion 3.

In Section 4, the application of the above
method towards the construction of capture orbits
to other bodies such as asteroids, Mars, Jupiter,
etc. is discussed.

2. Lunar Capture Orbits

Lunar capture orbits are described in this

section, and an example of one which is applicable

to the Lunar GAS mission is analyzed.
and terminology used above will be used
the remainder of this paper.

The notation
throughout

In order to construct a capture orbit, cthe
location of Q must be precisely determined, or more
generally the stability boundary SB must be
determined. The precise definition of SB and 1its
determination is given in the Appendix. A possible
jusctification of its existence based on resulcs in
dynamical systems is glven there. It is also seen
in the Appendix that SB should not be viewed as
existing 1in the three-dimensional position space
about the Moon, ‘but rather in the six-dimensional
position-velocity space.

To determine Q, a desired inclination, lati-
tude and 1longitude for cthe «capture orbit is
selected at the instantaneous moment of capture.

Let L represent the radial line from the center of
the Moon, each point of which has the given lati-
tude and longitude. Assuming an approach direction
for che capture orbic, we locate the critical point
along L where gravitational fields of the Earth and
Moon approximately balance as follows - starting at
a sufficiently low Lunar altitude, propagate an
orbit with an initial position on L in the given
approach direction with.circular velocity magni-
tude, wuntil it recturns to a transversal reference
plane through L (See Figure 3). The Lunar relative

eccentricity and deviation distance from the
initial point when it returns to this plane is
measured. For low Lunar altitude, this
eccentricity and deviation distance will be near
zero since the Earth’s gravitational field will be
felt to a small degree. Repeating this at higher
initial altitudes, an altitude will be eventually
reached where the eccentricity, e, will become
greater than 1 after one cycle. The altitude where
e - 1 gives the location of Q.

Thus, targeting to Q with the above conditions
will achieve a capture orbit with a given inclina-
tion. In practice one can target to an altitude
vhere e is slightly less than 1. This will yleld a
capture orbit with a bit more stability as it moves
about the Moon. This targeting is discussed in the
Appendix where a Newton's algorithm is derived. .An
alternate way of constructing a capture orbit at Q
is to begin with the required capture conditions,
and then integrate backwards in time until a suit-
able position about the Earth is attained at a
point P. We choose P in this case to be an oscula-
ting periapsis point. The capture orbit described
below was found in this fashion. For this orbit it
wvas desired to be captured over the north Lunar
pole. This is a constraint required by the Lunar
GAS mission.



norcth Lunar pole capture orbic
conscructed so as to approach along the Earth Moon
This direction was chosen for convenience,
alchough ic appears to be a direction which mini-
mizes the required alcicude for capture as will be
seen in the Appendix. Assuming Lunar and solar

perturbations, this orbit is shown in Figure 4. 1In
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figure 4, A Lunar Capture Orbit

this figure, which is an ecliptic plane projec-
tions, the orbit leaves p at 154,089 km from the
center of the Earcth on 12/15/89. Sixteen days
later it approaches the capture point 35,000 km
from the center of the Hoon over the north Lunar
pole. 1Its approach along the Earth Moon line at
the position indicated is not seen in this inercial
coordinate system. A graphic sketch of the ap-
proach geometry is seen in Figure 5. At the moment
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Figure 5.

of capture at Q, the Lunar relacive eccentricicy is
0.2 vith a relative Lunar period of 9.5 days.

KMe10°

The complex dynamics of this orbic is seen -
Figure 6, 7 when it is Plotted in a rotating
coordinate system which rotactes with the Moon o+
velocity of about 1} km/s, which is centered at the
Earth. In this system, the Moon is fixed and it is
Put on the y-axis. In the ecliptic plane Projec-
the orbit moves towards the Earch
Moon L, Lagrange Point, has a closest approach to
this point of about 5000 kn where it moves away,
forms a loop, and then approaches capture condj -
tions at Q along the Earth Moon line. Although ic
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Figure 6. Capcture COrbir in Rotacting Coordinacss

might appear at firstc that this motion is an arci-
fact of being in a rotating coordinate system, this
is seen not to be the case in Figure 7. The orbit
eéxecutes a large out of Plane motion where it rises
up and then falls below the L; point, where it then
abruptly moves up above the Earch Moon line to the
point Q on the stabilicy boundary ac 35,000 km. As
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indicated by an argument in the Appendix, this
transfer orbit is chaotic; that is, very small
changes in the initial conditions at P will lead to
large changes in the final position due to its
behavior as it moves below the Lagrange poinc, and
then back up above the norch Lunar pole. 1In fact,
it is seen that very small changes in the condi-
tions at P can cause the orbit to completely avoid
capture conditions. Thus, under real conditions
where the required initial conditions at P will not
be exactly met, orbic correction maneuvers will
have to be implemented.

A reason the orbit approaches L, is to slow
itself down in order to be reoriented to achieve
Lunar polar capture conditions. Both the hyper-
bolic and elliptic qualities of L, achieve this.
It is well known that of the six eigenvalues
associated to the solutions of the linearized dif-
ferential equations of motion at Ly, & are ellipcic
and 2 are hyperbolic. The elliptic ones are
related to fBe well known families of halo orbics
abouc L, %10 This cyclic motion tends to trap
the orbit as it moves near L;. The hyperbolic
character of L; gives an element of instability to
the motion. These properties contribute to the
type of motion observed in Figure 7. 1In addition
to the linearized character of motion about L,, the
nonlinear effect of perturbations of both the Earth
and Moon will cause the motion near L, to be
complex. These issues are not pursued furcher in
this paper.

All numerical integrations for the capture
orbits were performed on a UNIVAC 1108 computer.
The ephemeris of both the Earth and Moon are
modeled. In practice, if a S/C were to move on
such a trajectory, thrusting would be used to
modify this orbit to facilitate achieving capture
conditions.

The above orbit makes no assumptions on thrustc
profiles since none are used. Thus, it is directly
applicable to the Lunar GAS mission.

In the next section we describe the spiral
orbits associated with the Lunar GAS S/C as it
spirals out from the Earth to P and spirals in
towards the Moon from Q.

3. Earth and Moon Spiral Orbits

The method of thrusting for the Lunar GAS S/C
is described in the introduction with regard to
spiral orbit propagation. In this section, we
describe the methods of their generation, and their
properties. We Dbegin with a discussion of the
Earch spirals.

Earth Spiral

One method of generating the spiral orbits is
to approximate the continuous thrusting along the
90° arcs with an equivalent impulsive AV by an

averaging method. The AV is applied at the point
a, tangential cto the arc and is directed towards
the Sun. This is shown in Figure 2. 1If applied at

b, it would be directed in the anti-Sun direccion.
The AV 1is estimated by averaging cthe tangential

component of the
assuming it is

thrust vector along the arc,
circular and then by using che
rocket equation. This AV is vectorially added to
the circular velocity at a, and the orbit is
propagated over 1/2 of a period to the point b. At
b, an equivalent AV is calculated and this process
is repeated. The spiral orbits gradually increase
their radial disctance from the Earth by this
process. In this model, drag is modeled which has
an effect near the initial altitude of 300 km, and
is about 1/2 of the thrust level. Degradation of
the solar cells due to radiation in the radiation
belts, roughly between 8000 - 18000 km, is modeled
by a suitable reduction of the thrust level. The
oblateness of the Earth, and percurbations due to
the Moon and Sun are not modeled. This relatively
simple model gives accurate resulcs when compared
to a more accurate one described nexc.In facet,the
rate of spiral radial increase is nearly thesame,
A comparison of the resultsobtained by chese two
models is not carried out in this paper for brevicy,

A more accurate model is made by modeling the

continuous application of the thrust vector along
the 90° arcs. This is easily done by adding the
constant acceleration due to this thrust to cthe

differential equations describing the motion of the
S/C about the Earch. This model is made more
precise by including the oblateness of the Earch
and the perturbations due to the Moon and Sun. In
addition, the Sun 1is tracked so that the cthrust
direction is oriented towards or away from the Sun
direction as described in cthe introduction.
Although cthrusting occurs over 90° arcs, cthis is
not necessary as other angles can be chosen, but it
appears that 90° yields both acceptable flight
times and fuel consumption.

The evolution of an example Earth spiral orbic

obtained from <the latter spiral model 1is now
described. We assume an initial altitude of 300 km
with circular initial conditions. An inicial

inclination with respect to the Earcth's equator of
28.4° is assumed. The initial mass of the S/C is
145 kg and the thrust is . gl N with a constant
mass flow rate of 9.59 x 1077 kg/s. Although the
thrust level should be reduced to model its degrad-
ation in the radiation belts, we hold it fixed
here. Also, Earth occultations where the s/C
cannot thrust are not modeled which, in facrc, give
a negligible effect. The variation of the radius
as function of time is shown in Figure 8.
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The eccentricity of the nearly circular spiral
orbits 1is not plotted since it stays less than .04
out to 200,000 km. The inclination with respect to
the Earth's ecliptic stays nearly constant out this
distance also. As seen, it takes about 670 days to
spiral out to 200,000 km. Approximately 3400
individual spirals are generated, and 28 kg of
propellant is used.

The variation of the node due to first order
oblateness perturbations is shown in Figure 9 which

ylelds the variation of the inclination with
respect to the ecliptic in Figure 10. The varia-
tion of the node in this case is covered in (12).
This 1is important for several reasons. In (12)

Penzo shows, in particular, that the regression of
the node along the Earth spiral is about 7 degrees
per day in low Earth orbit which becomes negligible
after about one year of spiriling as the radial
distance increases. This implies chat an initial
value of the node should be chosen so that the node
value converges to a desired one after one year
This, in turn, specifies the ecliptic inclination
that the orbit converges to as it spirals away from
the Earth. The oscillation of the inclination due

.
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to the nodal regression is also important since the
angle of the Sun on the solar panels will change,
thus causing a variation in the power. The angle
of the thrust vector from the orbit plane will also

change causing a variation in the effect of the
thrusc.

Lunar Spiral

When cthe Earth spiral reaches the
critical distance at P, the capture orbit starting
at P brings the S/C to the position Q above the
north Lunar pole. We assume the capture orbict
described in Section 2 so that P is at a radial
distance from the Earcth of 154,089 km, and Q is at
a radial distance of 35,000 km from the Moon. The
Lunar spiral here is modeled with the averaged
model described above. The equivalent AV approxi-
mating each thrust arc is then applied opposite to
the direction of motion. Earth and Sun percurba-
tions are not modeled, nor is the oblateness of the
Moon. While the S/C is spiraling down to an alcti-
tude of 100 km, the Earth-Sun-Moon geometry is
changing. The angle that the Sun direction makes
on the solar panels may be small enough so that not
enough power can be produced for the S/C thruscters,
or the S/C may be occulted by the Moon. We ignore
these effects here for brevity. The initial mass
of the S/C at Q is 118.5 kg and the thrust is
0.031N. To descend to a 100 km altitude, it takes
121 days and 5 kg of fuel is used.

Performance

The variation of the total time of flight
from the initial Earth altitude of 300 km to the
final Lunar altitude at 100 km and fuel consumption
as a funcrion of initial mass is now described. We
look at the three initial masses of 125, 145, 170
kg. The Earch and Lunar spirals are generated as
described above using the latter and former spiral
models respectively. However, we also model the
degradation of the solar cells by reducing the
thrust F as follows: For 0-150 days, F = .0424N,
and for 150 days until the end of the Lunar spiral
at 100 km alctitude, F =~ 031 N. We also assume the
capture orbit described in Section 2 so that the
final position P of the Earth spiral and the begin-
ning position Q of the Lunar spiral are the same as
above. It is remarked when the Earth spiral
reaches P, the orbital elements of the spiral must
match the required conditions for the capture orbit
which requires e = .3, and the spiral orbit must
also reach P with the correct Earth-Sun-Moon
geometry. This problem is briefly discussed after
the performance data is presented. 1In Tables 1,2
the variation of the time of flight TF in days and
fuel consumption DM in kg is given as a function of
the initial mass M,. The variation of TF and DM
are graphed in Figure 11.

Transition

A necessary problem to solve is to insure that
the spiral orbit actually reaches the position P
with (1) the Sun in a suitable position in order to



.

M, | TF - Earch Capture Lunar
Spiral Orbic Spiral Total TF
125 | 545 16 94 655
145 | 633 16 121 770
170 | 752 16 140 908
Table 1. Time of Flight Variation
M, | DM - Earcth Capture Lunar
Spiral Orbit Spiral Total DM
125 | 22.7 0 3.9 26.6
145 | 28.5 0 5.0 31.5
170 | 31.3 0 5.8 37.1
Table 2. Fuel Consumption Variation
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Figure 11. Performance Curves

power the solar cells, and (2) the osculating
orbital elements of the spiral at P match those of
the capture orbit. Both of these conditions can be
satisfied by using a Newton’'s targeting algorithm,
i.e. a differential correction algorithm, which
varies the duration and direction of the thrust
arcs prior to arriving at P with the required
velocity vector. This is not described here since
it is similar to the type of algorithm described in
the Appendix for the Lunar capture orbit targeting.
For the sake of simplicity of argumenc, we assume
that the spiral arrives at P wich the correct
velocity direction. In general the magnitude of
the velocity will not match that of the caprture
orbit. This manifests itself in the nonequality of
the eccentricities. Typically, an Earth spiral at
P has an eccentricity of approximately .02. But
the capture orbit has an eccentricity of .3. The
eccentricity of the spiral at P can be increased to
0.3 by doing a succession of spiral orbits by only
thrusting on one side of the spiral, where the
center of the thrust arc lies at the point P.

Approximately 8 of these spirals are required to

increase the eccentricity. This increases the
flight time to about 70 days. This increase in
flight time is not factored into the above perform-
ance data. The most efficient way of achieving the
correct conditions at P is to apply the Newton’s
method to determine a suitable thrusting variation.

4. Applications to Octher Capture Orbicts

Capture orbits to other bodies can be cons-
tructed in a way similar to those in Section 2.
The size of the stability boundary about a body My
depends on the degree of the perturbations of other
bodies. We assume for the sake of argument that
there is only one other perturbing body M,, and
that the mass of parcicle m to be captured by My is
negligible with respect to the masses of M, and M,.
One can take, e.g., M} = Moon and M, = Earth as was
done in this paper. On the other hand, there are
many other possibilities. For example, if My =
Sun, then Hl could be chosen to be an asteroid,
comet or Mars, etc. The collinear Lagrange point
L, between M; and M, will play a role in che
dynamics of capture orbits from M,. The particle m
need not be a S/C. Thus, it is conceivable that
Phobos or Diemos could have been captured by Mars
by such orbits. Similarly, some of the satellites
of Jupiter, as well as those of the other oucter
planets, could have been captured. For this to be
the case, these satellites must have not only been
simply captured, but captured in such a way that
the motion about M, is stable. These conditions
are difficult to achieve, but the chances of
achieving them were probably much higher at the
early stages of the solar system formation due to a
possible large number of objects moving throughout
the solar syscem.

<

S. Appendix

This section is subdivided into two topics
referred to in the previous sections. The first
topic describes the stability domain SB in more
detail than above. An argument is also given which
gives a possible justification for its existence.
The other topic describes a Newton's algorithm
which will allow targeting to Lunar capture condi-
tions. Possible difficulties in implementing this
algorichm are briefly discussed.

The Stability Boundary and Its Escimaction

The stability boundary was heuristically
described in the introduction. SB is estimaced by
carrying out a procedure described in the beginning
of Section 2 to determine the location about the
Moon of the point Q that would be necessary in
order to achieve a capture conditions. In this
case, a critical position on the radial line L
shown in Figure 3, which has the given latitude, ¢
and longitude, 8, wvith respect to the Moon, 1is
determined where gravitational effects of the Earth
and Moon balance. This position on L was deter-
mined by propagating orbits from L with circular
inicial conditions and monitoring their final state
after approximately one cycle on a reference plane.
This plane is called a Poincare section These
orbits along L are all propagated with the required
inclination of the capture orbit, and with a
given approach direction from the Earth. Monitor-
ing, for example, the eccentricity, the location of
the critical point Q is the position on L where
afcer one cycle, e goes from an initial value of
zero to one.



For given ¢ and 8, the radial discance from
the Moon where the gravitational fields balance
depends on the approach direction. For a fixed
¥,8, there is 1 paramecter family of possible ap-
proach directions and therefore also of correspond-
ing possible critical radial discances. The set of
approach directions over the north Lunar pole is
shown in,Figure 12. This set of approach direc-
tions, V, and radial discances, r, is two-
dimensional. We call this sec

U(p,8) = ( V($,8), £(4.8) ) )

—_

The vectors V are constrained to two-dimensional
planes perpendicular to the respective radial
vectors from the Moon. This set defines a two-
dimensional slice of SB for the given $,0. If ¥,8
are allowed to also vary where -90<p < 90, 0< 8
<360, chen they make a two dimensional set, Q.
This set together with the corresponding two-
dimensional sects U make a four-dimensional set
which is defined to be SB. Thus,

s8 =(Jues.e .

¥.8¢Q

Ic is remarked that since SB depends on the
approach directions, then it exists in position and
velocity space, or phase space, which has six
dimensions. SB can be viewed as a 4-dimensional
region existing in the &-dimensional phase space

Figure 12. Approach Directions

SB can be numerically estimated by choosing a
given ¥,8 and cthen determining the critical radii
along four basic approach directions. For example,
over the north Lunar pole, % = 90 and 6 is
arbictrarily fixed, e.g. to 0, and the approach
directions chosen are labeled 1,2,3,4, on the plane
as shown in Figure 13. We first focus on the
direction a,, and monitor e at the end of one
circular period where inftially e = 0. The direc-
tion a; is in che anti-Earth direction. The
inicial radial distance is r_ and the final {s rg.
The resulcts are shown in Table 3. The initial time
of propagation is fixed at 1/1/1990 .

Figure l3. Estizaction of SB
To B3 € (Final)
32,500 | 21,757 .39
37,500 | 24,019 .51
40,000 | 47,901 L2
42,500 | 76,753 I.1l
45,000 | 113,305 3:.05
50,000 | 200,610 11.76
Table 3. Variation of the Eccentricity

From Table 3 we conclude that the cricical
is approximately 42,000 km.
tions we find that a; = 68,000,
46,000.

radius
For the other direc-
ay = 40,000, a, =

Similar results are obtained for the other
locations b, ¢, d, e, f shown in Figure 13, but are
not described for brevity.

It 1is remarked that <topologically SB is
equivalent to the cagtesian product of a two-
dimensional_ sphere, §%, and a two-dimensional
cylinder, Cz. Thus,

sB g2y ¢

Existence of SB (Optional)

A brief argument {s given to motivate the
exiscence of SB. It is assumed for the sake of
argument that the eccentricity of the Moon’s orbit

is zero, and that after capture, the orbit remains
on a fixed plane E of motion corresponding to the
instantaneous planar motion at the moment of
capture. These erroneous assumptions will be
relaxed lacter. On the plane of motion, {1t can be
shown that the motion can be described by a two-
dimensional cr?nsformation of a type which i{s area
preserving.(1 For these transformations, 1{t can



be shown that nearly circular motion starting suf-
ficiencly near the Moon and conscrained to E will
be quasi-periodic and stable for all cime. This
follows by an application of the Kolmogorov-Arnold-

(D puc chis type of motion cannot
persist at arbitrarily large distances from the
Moon. General results by J. Mather on area
preserving ctransformations when applied to the
motion on E shows that there exists a critical
‘distance r from cthe Moon where quasi-periodic
motion, in general, *uill breakdown. It is not
possible to relacte r to the critical distances
described above where circular motion goes from
elliptic to hyperbolic after one cycle about cthe
Moon. This is because in the more general setting
where the Moon's eccentricity is not zero, and the
motion need not be constrained to E, Mather's
results cannot be applied. However, it is possible
that a more general theorem exists which will
predicc the breakdown of quasi-periodic motion
about the Moon in the general setcing. The
numerical results presented here tend to point in
this direction. If this were the case, then the
distances from the Moon where quasi-periodic will
break down may be related to the critical distances
measured above for an orbit with a given inclina-
tion, i,and ¥, © which goes from elliptic to
hyperbolic states after one cycle. It is numeric-

Moser theorem.

ally observed, in general, that the motion often
occuring _when the quasi-periodic breaks down is
chaotic. ‘>’
A Newton'’'s Method For Targeting
to Capture Conditions
We describe an algorithm which will allow

targeting to Lunar capture conditions at Q near the
Moon from a position P about the Earth. It 1is

assumed that the critical distance above the Moon
has been determined from V, ¥, © for capture.
Thus,

the position coordinactes (ql,qz,q3) of Q are
determined. The required velocity coordinates
(47.97,43) at Q are also determined by knowing the
approach direction . This velocity vector
is assumed to be perpendicular to the position
vector to Q. The magnitude of the velocity has the
value of the magnitude of circular velocity at the
given radial distance. We set

b - (41.97.93,97.97.93)

Thus, b 1s a vector of six components.
the vector notation, b, for simplicicy.

We delete

Thus, given b, we would like to determine both
tpe Jposition (py,py,p3) of P and the velocity,
(P1.P2.P3), required to achieve a capture orbit
which arrives at Q a time T later to be determined.
We set

a = (p1.Py.P3. P1.P2.P3)

We would like to determine a and T from an initial
guess a . If wve let f represent the association of
a, tob; on a reference plane by the propagation
o? the trajectory, then

by, - f(ay) . (1)

The time of propagation is given by Ty. In general
b; # b and Ty # T since a, F a, where a is the
desired solucion. Thus, we want to solve the

boundary value problem for a. (See Figure 14).

f(a) = b . 2)

Expanding (2) in a Taylor series about a = a

o
yields

£(a) = £(ay) + 2L(a)aag) + ... = b (1)

where

af
4= 35" (8

is defined to be the 6x6 variational matrix. In
component form, an element Aij of this matrix is
given by

where i,j = 1,2,...6.

REFERENCE
PLANE

Figure l4. Newton's Iteration

Truncating quadratic and higher order terms in
(3) to approximate (2) implies initially from (1)
that

a) - n'l(ao)(b-bl) +a,

provided 01 is nonsingular. a,; should yield a
better guess; that is, b2 - f(al) should lie closer

in distance to b. Iterating,
b, - fa) (ba)
where
ans1 = 0 M) (b-b L) + a, (4b)



n=-1,23,.. 1f |a-a | =

is sufficently small, then (4a,b) converges,

b

n b

an———a

as follows from (6). Moreover, T

n

From cthe sensitive behavior of the capture
orbit shown in Figure 7 as a function of initia
conditions,it is seen that the computation of Q17
(ap),k = 1,2,... may be difficult. An accurace
dl?ference scheme should be used to compute the
elements of Q.

Summary

The exisctence of Lunar capture orbits is
numerically demonstrated, and cthey are used to
successfully construct a trajectory from the Earch
to the Moon for che Lunar GAS mission. These
capture orbits are ballistic and can be used for
other missions which may or may not require 1low
thrusc. Ideas from dynamical systems theory are
used to motivate the existence of capture orbits
and the concept of ’‘stability boundary’. The wuse
of ballistic capture orbits represents a different
approach to mission design.
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