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Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture

Edward A. Belbruno* and James K. Millert
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

A method is described for constructing a new type of low energy transfer trajectory from the Earth to the moon
leading to ballistic capture. This is accomplished by utilizing the nonlinear Earth-moon-sun perturbations on a
point mass in three dimensions. The interaction of the gravitational fields of the bodies defines transition regions
in the position-velocity space where the dynamic effects on the point mass tend to balance. These are termed weak
stability boundaries. The transfer is obtained by the use of trajectories connecting the weak stability boundaries.
It uses approximately 18% less AF than the Hohmann transfer to insert a spacecraft into a circular orbit about
the moon. The use of this transfer has recently been demonstrated by Japan's Hiten spacecraft, which arrived
at the moon on October 2,1991. Application of the transfer method is also made to the Lunar Observer Mission.

Nomenclature
DV = change of velocity at x
e - eccentricity
G = gravitational constant
Hk = Kepler energy with respect to E (Earth), M (moon)

for k = 3, 4, respectively
h = altitude above the moon
/ = radial line extending from central mass
m = point mass or spacecraft
mk = mass of m, S (sun), E, M for k = 1, 2, 3, 4,

respectively
P = half-plane along line /
(R3 = three-dimensional real vector space
r* = stability breakdown distance relative to E
r* = stability breakdown distance relative to E, M for

k = 3, 4, respectively
T = time spacecraft is at x
tp = time of capture
u = approach direction to the moon
Vc = velocity at lunar capture
Vc = circular velocity about the Earth at h = 167 km
Vj = velocity at Earth injection
Fa, = hyperbolic excess velocity
WSB^ = weak stability boundary of E, M for k = 3, 4,

respectively
x\ = three-dimensional position part of $T
Xu = three-dimensional position part of $n
xk = position of m, S, E, M for k = 1, 2, 3, 4,

respectively, with components (xk\,xk2,xk^
x = three-dimensional position part of $
a. = angle of velocity direction relative to the central

mass on plane perpendicular to /
j8 = angle between EM and ES lines
F = trajectory from E to M by linking ̂  and <t>n
AF = change in velocity
6,<p = spherical angles about central mass
H = Gm4
$c = capture state of m relative to M at t = tF
$£ = injection state of m relative to E at t = t0
$! = trajectory for m from $E to l>
$n = trajectory for m from <J to $c
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= trajectory of m in phase space relative to E, M
for k = 3, 4, respectively

= solution curve, or trajectory, in phase space
describing motion of m with six components

I. Introduction

3> = $3 (T)

T HE classical approach to transfer to the moon from the
Earth is by the well-known Hohmann transfer. This type

of transfer is two body in nature. That is, it is constructed by
determining a two-body Keplerian ellipse from the Earth to the
moon where the two bodies are the Earth and a point mass m ,
e.g., a spacecraft. Such transfers have a hyperbolic excess
velocity V^ relative to the moon which determines the AF
required to be captured into an elliptic orbit about the moon.
A method is described in this paper whereby transfers to the
moon can be obtained in three dimensions that are ballistically
captured at the moon, i.e., no AF is required to achieve an
elliptic state at lunar periapsis. However, this capture is un-
stable and can be stabilized for a negligible amount of energy.
This type of capture thus eliminates the hyperbolic excess ve-
locity at lunar periapsis. This results in a substantial propellant
savings for spacecraft. However, the time of flight from the
Earth to the moon is larger than the Hohmann time of flight.

The transfer discussed in this paper is obtained by utilizing
the perturbative effects of the Earth-moon-sun on m at all
times to achieve the ballistic capture. The technique for doing
this first requires the estimation of regions in the phase space
(i.e., position-velocity space) where the perturbative effects of
the Earth-moon-sun acting on m tend to balance. These re-
gions are called weak stability boundaries (WSB) and are de-
fined in Refs. 1 and 2. They are defined in this paper in Sec.
II and are estimated by studying the breakdown of " stable
motion" about a body in question. The term stable motion is
also defined in Sec. II. Estimating the breakdown of stable
motion along a span of different directions about a body in
question in the six-dimensional phase space yields a five-
dimensional region, which is the weak stability boundary
where a particle m feels the gravitational attraction of the
central body and the other perturbations in a nearly equal
fashion. The resulting dynamics near this region are very non-
linear, and the particle m can be abruptly pulled away from the
central body by the other perturbations. Such a boundary in
the phase space exists about the moon, due to the effects of the
Earth and sun, and about the Earth, due to the moon and sun.
When projected into the three-dimensional physical space,
these boundaries continuously extend from the central body
out to a maximal distance along any direction from the central
body. To be in the boundary at a given distance from the
central body, the particle m must have the necessary velocity.

770

D
ow

nl
oa

de
d 

by
 e

dw
ar

d 
be

lb
ru

no
 o

n 
A

ug
us

t 2
7,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/3
.2

10
79

 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F3.21079&domain=pdf&date_stamp=2012-05-23


BELBRUNO AND MILLER: EARTH-TO-MOON TRANSFERS 771

X (km) X 105

Fig. 1 Numerical simulation of a ballistic capture transfer trajectory for the Lunar Observer Mission; ecliptic plane projection, sun's direction
indicated at Earth injection.

Thus, in physical space, the weak stability boundary describes
a continuous three-dimensional region about the central mass
with a velocity associated to each point of the region depend-
ing on the direction of motion. By its definition, the weak
stability boundary is a location where escape from a central
body can occur. Similarly, it is a region where capture can
occur. In general, the capture is temporary. The WSB may be
viewed as a more general and precise estimation of the notion
of "sphere of influence." Although many definitions can be
made for the sphere of influence or, more generally a transi-
tion region, the WSB is defined by observing the actual behav-
ior of the dynamics of m about the central body due to the
perturbative effects of the other bodies. This makes it possible
to map out a true region where transition behavior can occur.

The method of transferring from the Earth to the moon to
achieve ballistic lunar capture is described in detail in Sec. III.
The idea is to leave from a given point near the Earth and fly
by the moon to gain enough energy to go out to the WSB of
the Earth, due to the sun and moon, at approximately four
Earth-moon distances from the Earth or 1.5xl06 km. This
WSB is labeled WSB(E) for reference. When the particle m is
at the WSB(E), small changes make large deviations in the
motion due to the sensitivity of m while in this region. A small
amount of energy can be used, i.e., via the thrusters of a space-
craft to match the initial conditions of a ballistic capture tra-
jectory connecting the WSB(E) and the WSB of the moon, due
to the sun and Earth, labeled WSB(M). The point of the
WSB(M) that the trajectory goes to in its osculating periapsis
has the required capture conditions so that at the given dis-
tance from the moon the trajectory has an osculating elliptic
state with respect to the moon. The elliptic state is in general
unstable so that the capture is temporary and should be stabi-
lized if a more stable capture is required. Thus, the transfer
can be viewed as being in two parts. The first part consists of
the transfer from the Earth via a lunar flyby of the WSB(E),
and the second part consists of going from the WSB(E) via a
ballistic lunar capture trajectory to the WSB(M). An example
of one of these transfers projected on the Earth-sun plane is
shown in Fig. 1. It is described in more detail in Sec. III. The
existence of a transfer of this type was first described in Refs.
2 and 3. The general idea of going beyond the Earth-moon
system and then returning to the moon can be viewed as similar
in principal to a classical two-body biparabolic transfer from

the Earth to infinity, and then from infinity back to the moon.
These are described in Ref. 4. At infinity, a zero AF maneuver
can raise periapsis to the moon's distance from the Earth,
which decreases the hyperbolic excess velocity at the moon.
However, this still yields a hyperbolic excess velocity at lunar
periapsis that is less than that for a Hohmann transfer.

The transfer method presented here offers two important
advantages over classical approaches. The first is that going to
the WSB(E) allows for a raise of periapsis for nearly zero AF
because of the sensitivity of this region. In this sense "infin-
ity" has been brought to a finite distance due to four-body
effects. The other important advantage is that use of the
WSB(M) eliminates the hyperbolic excess velocity and yields
an elliptic state at lunar periapsis. The finite distance of the
WSB(E) yields realistic times of flight, and the elliptic state at
lunar periapsis together with the near zero maneuver at the
WSB(E) yield substantial savings in AF for inserting a payload
about the moon in a circular orbit. It is shown subsequently
that this new transfer improves this AF over a biparabolic
transfer by 14% and a Hohmann transfer 18%. The improve-
ment over a bielliptic transfer is 31%. This is mainly due to the
relatively large midcourse maneuver that a bielliptic transfer
requires at the WSB(E) location. This is described in Sec. IV.

The transfer obtained for the four-body problem can be
used as an initial guess in a more realistic model of the solar
system where the motions of the Earth, moon, and sun are
modeled with an ephemeris. Retargeting the transfer using a
differential correction algorithm readily finds the transfer in
this more realistic model. This is described in Sec. III. The
ability to find these transfers in the more accurate modeling
shows their applicability to spacecraft. This transfer has been
demonstrated by the Japanese spacecraft Hiten which started
in April 1991 and arrived at the moon on October 2, 1991.
Hiten did not have enough propellant to reach the moon and
become captured by classical methods. This is described in
Sec. III. Application of this transfer for the Lunar Observer
Mission is carried out in Sec. IV. Hiten was launched in Janu-
ary 1990 by the Institute of Space and Astronautical Science
(ISAS) in Japan.

Most of the results are obtained by numerical integration
due to the nonlinearities involved. Geometric results from dy-
namical system theory5 are used to motivate the existence of
various behaviors observed.
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772 BELBRUNO AND MILLER: EARTH-TO-MOON TRANSFERS

II. Model, Weak Stability Boundaries,
and Capture Orbits

The motion of the point mass m is described by the three-
dimensional four-body problem between m, sun, Earth, and
moon. The only force acting between the masses is given by the
Newtonian gravitational inverse square force law. The equa-
tions of motion are given by

Table 1 Distance r? for e = 0
(1 unit r| = EM distance)

/ -xk) O)

where k - 1, 2, 3, 4 and xk = (xki >xk2,xki) 6 (R3 is the position
in inertial coordinates (x,y,z) of the point mass mk. There-
fore, this is a system of 12 second-order differential equations.
The units of kilometers, kilograms, and seconds are assumed
throughout unless otherwise mentioned. As will be discussed
later, another model of the four-body problem will be used for
applications that more accurately models the solar system.

The initial values ^(0), xk(Q) for k = 2, 3, 4 for the sun,
Earth, and moon, respectively, are given from an epoch of
interest corresponding to t = 0. It is assumed that a set of initial
values are chosen to have a realistic starting point for the
planets. The goal of this paper is to determine the initial values
Jti(0), JCi(O) for m to achieve a ballistic capture at the moon
from a given position about the Earth.

To facilitate the construction of this transfer, the WSB is
defined about the Earth due to the sun and moon, and about
the moon due to the Earth and sun. As described in the Intro-
duction, it is a region where stable motion breaks down about
a central body, e.g., moon or Earth, due to other perturba-
tions. For notation, E, M, and S represent the Earth, moon,
and sun, respectively.

In what follows, motion will be defined with respect to E or
M. The coordinates of the solutions of Eq. (1) with respect
to E, labeled xk, are defined by the transformation xk=xk
- ;c3, where E is the origin (*3 = 0). This is a noninertial coor-
dinate system (Jc,j>,z) where the differential equations for xk,
k = l,2, 4, are

i -xk / -xk) -

with Jc3 = 0. For simplicity of notation, the following conven-
tion is assumed: When referring to motion relative to E, the
bars over the coordinates are dropped and the resulting coordi-

Fig. 2 Angles a, 0, <f> specifying the direction of propagation of a
trajectory about the Earth at the initial time t =0: at t = 0, the x axis
lies along the Earth-sun line, and 0 is the angle between the x axis and
the Earth-moon line.

e

0

7T/2

TT

3-JT/2

———

<p a.
0

0 '/2
7T

37T/2

0
o */2

7T

37T/2

0
o */2

7T

37T/2

0
o */2

7T

37T/2

0
n */2

7T/2
7T

37T/2

r!
0.09
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0.19
0.12
0.08
0.23
2.95
0.23
0.10
0.11
0.23
0.11
0.08
0.12
0.39
0.12
0.09
0.17
0.09
0.17

Table 2 Estimation

0
0.1
0.5
0.99

0.09
0.07
0.04
0.001

nates xk are not to be confused with those for system (1). The
same convention is adopted for motion about M, where the
transformation xk -xk -;c4, / = 1, 2, 3, is used to arrive at a
system similar to Eq. (!').

Stable motion about the Earth is defined as follows: Choose
a radial direction D from the Earth given by the spherical
angles 0 £ [0,2?r], <p € [ - ?r/2, -jr/2]. Angle 6 = 0 corresponds to
the ES line along the x axis at / = 0 (see Fig. 2). Let / denote the
half-line along this direction D starting at the origin. Let
$(0 = [*i(0»*i(0] represent the solution curve of a solution
to Eq. (!') such that *i(0) € / and

[xm9xm] = D xlk(0)xlk(0) = 0
J k=\

In addition, assume that the osculating Kepler state of m on /
for t = 0 has the same given eccentricity e £ [0,1). Now, the
half-plane P through / and perpendicular to Jc^O) is transver-
sal to the curve x\(t) at t =0; that is, the angle between #i(0)
and P is nonzero.

Particle m is said to cycle about E under the following
conditions:

1) Position *i(0) 6 P.
2) There is a first time T>0 such that x^T) is transversal

to P.
3) The distance of m to E will be less than the distance of

E to S when the orbit of m projected on the ES plane crosses
the line from E to S, before returning to P.

If |jCi(0)| is sufficiently small, then m will cycle about E
where T is nearly a Keplerian period, and where $(T) nearly
equals $(0). This is the case since the perturbations effects of
S and M will be negligible. However, as |jti(0)| increases, m
will cycle about E and will return to $ farther away from its
given elliptic state since perturbative effects of E and M will be
more pronounced. Numerical results show that for |#i(0)| suf-
ficiently large, m will be pulled away from E and violate con-
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BELBRUNO AND MILLER: EARTH-TO-MOON TRANSFERS 773

dition 3 (see Fig. 3). Thus, the perturbative effects of S (rela-
tive to E) are dominant on the dynamics of m. It is numerically
found that a well-defined distance r*>0 exists such that for
r<r*,m cycles about E and for r >r*, m violates condition 3.

Stability of motion is defined as follows: The motion of m
about E is said to be stable if r <r* and unstable for r >r*.

There are singular cases where m collides with M or S as it
is propagated from /. However, these cases can be made well
defined by extending the solution $(t) through collision via
a suitable regularizing transformation.5'6

The preceding definition of stability of motion about E is
formulated for stability of motion about M by similarly refer-
encing the line / to be centered at M, and by replacing E by M
in this definition also and by replacing S by E. We let r*,
k = 3, 4, be determined relative to the particle of mass mk.

Thus,
„# -.*//) Q ~\ C^\
'k = 'k v">^>^»P>^/ \~-1)

where k = 3, 4; a. € [0,2?r] is the polar angle on a plane per-
pendicular to / which parameterizes the velocity direction
*i(0); and /3 is the angle between the Earth-moon and Earth-
sun lines at the initial time of propagation on / (see Fig. 3).

The sets

Fig. 4 Components of a ballistic capture transfer trajectory.

[0,27r], <P € [-ir/2,ir/2], a € [0,2ir], 0 € [0,27r], e€[0 , l )}

for £ = 3,4, represent the weak stability boundaries of the
Earth and moon, respectively.

The WSBfc are estimated in Ref. 1 for three dimensions.
Table 1 shows the estimate of WSB4 for different values of 0,
<P, and a. in the case of e = 0 and where the sun is not factored
in for simplicity since its effects on r*for e = 0 are negligible.

The relationship between r* and e can be obtained from
Eq. (2). It is numerically determined that as e — 1, then r*^0.
This is illustrated in Table 2 for the WSB4 for the case of 6
arbitrary, (p = ir/2, a. = 0, and where the sun is again not fac-
tored in due to its negligible effect on WSB4. For a given r *,
0, (p, a, and /3, there is a numerically determined unique value
of e,

e = (3)

Equation (2) can be used to solve for e by noting the contin-
uous dependence of r*(e). This continuous dependence is nu-
merically observed but not proven analytically.

Capture orbits are defined as follows: From the definition of
WSB^, £ = 3,4, we choose an initial state <$>(0) along /, for a

given 6, <p, a, /3, e at r = r* + 6, for a given 6 > 0 where d is taken
small. Therefore, the Keplerian energy Hk with respect to E or
M, respectively, at t = 0 is negative; and by forward integration
there will exist a time f>0 such that Hk=Q. This follows by
definition. The corresponding orbit is said to escape E or M,
respectively. Capture is defined in a similar way: m is captured
at E or M if at a time t = 0, Hk = 0, k = 3, 4, respectively, and
at a later time f >0, Hk <0. Capture orbits can be determined
numerically as follows:

1) Choose an initial state $(0) along / for a given choice of
0, <p, a,/3,eatr = r£ + d.

2)_ Increase d from 6 = 0 until m escapes E or M at time
t = f<0 by backward integration from $(0).
Therefore, a capture orbit is obtained by forward integration
from t = f to 0 where Hk<Q.

It is remarked that for a capture orbit, the capture is, in
general, temporary, a fact that is observed numerically. That
is, along a capture orbit $(/) to E or M, a value of t = t*
generally exists, such that

for Q<t<t* and

//it [**(/)] <0

/fit [**('*)] =0

Fig. 3 Estimation of the stability boundary distance rf about the
Earth; P is the reference half-plane normal to the direction of propa-
gation through the line /.

where $*(0» A: = 3, 4, is $ relative to E or M, respectively.
The significance of a capture orbit to E or M for applica-

tions to spacecraft is seen by the fact that the orbit has no Vw
at E or M at t = 0. Thus, the required energy needed to achieve
a more stable capture is decreased. This yields a decrease in the
required propellant for a spacecraft.

III. Earth-Moon Transfer with Ballistic Capture
A ballistic capture to the moon from the Earth can be ob-

tained as follows: Assume that the position of m with respect
to M at the time t = tF of capture is given at some altitude h > 0
above the lunar surface. We also assume a given lunar ap-
proach direction u where \u\ = 1. Thus, 0, <p9 a, |8 are given,
where /3 is function of tF. Let r be the radial distance from M
and assume that r = r* so that m 6 WSB4. The value of e is
determined from Eq. (3). By increasing e to e + 6, for some
6>0 integrate $(/) backward in time from the capture state
<1>C at t = tF until it escapes the moon. This is stated more
precisely as follows.
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774 BELBRUNO AND MILLER: EARTH-TO-MOON TRANSFERS

5 Day Time Ticks

Fig. 5 Numerical simulation of a ballistic capture transfer trajectory
for the Japanese spacecraft Hiten: ecliptic plane projection, sun's
direction indicated at Earth injection.

1) Integrate $(/) backward, from $c at t = tF to <l = $3(r),
for T<tF, which is near the WSB3 at approximately 1.5 x 106

km from the Earth.
2) Let $£ be the initial state of m relative to the Earth for

t = t0< T. For a fixed position relative to the Earth, vary the
initial velocity x(tQ) of $E so that m leaves the Earth and
goes to the initial position x € (R3 of <J at t = T, and flies by M
before reaching x to achieve an energy augmentation by grav-
ity assist (see Fig. 4).

3) Let &ii(t) = [xu(t),Xu(t)] be the capture trajectory from
l> to 3>c, and let ^>j be the trajectory arc from €>£ to $. In
general, the initial velocity xu(T) for $>n> where xu(T)
= x will not equal the final velocity Xi(T) for $j. Set DV
= Xn(T)-Xi(T). Minimize DVby adjusting tQ, tF, and d.

4) The trajectory F, obtained by adjoining <$>! to $n, rep-
resents a transfer from E to M with ballistic lunar capture.

The targeting of $i to x is carried out by Newton's method
using differential correction. A fourth-order Runge-Kutta nu-
merical integration is used to integrate Eq. (1). More refined
solutions using a planetary ephemeris modeling the planets of
the solar system, solar radiation pressure, and oblateness per-
turbations are obtained by starting from the converged solu-
tions from Eq. (1). These are used as an initial guess for a
14th-order integrator with the more realistic modeling. They
are also retargeted with a Newton's method, and the solutions
are obtained in about four iterations. These more realistic
solutions are described in the two applications given next. This
transfer method is applied to two different missions, one being
operational.

Application I: Lunar Observer
The Lunar Observer Mission (LO) was projected for the mid

to late 1990s, and the LO spacecraft was intended to orbit the
moon at a low circular polar orbit. It had an array of instru-
ments to make a detailed study of the lunar surface.7 The
nominal plan for LO was to use a Hohmann transfer to go
from a low Earth orbit at 167-km altitude to a low circular
orbit at the moon of approximately 100-km altitude with a
3-day time of flight. The transfer obtained by the WSB proce-
dure is described next.

The arc $j leaves the Earth on December 22, 1996. The en-
ergy required to inject from Earth is measured by

C3 =

at t = t0 which is equal to - 1.1 kmVs2. A lunar flyby is re-
quired to achieve an arrival at the WSB3 on February 9, 1997.

A maneuver of 0.029 km/s is required to match $n. This
maneuver is split between the initial lunar flyby of 0.011 and
0.018 km/s at x. Arrival at the moon into a polar orbit occurs
on May 11, 1997, into a capture ellipse of eccentricity e = 0.95,
with a periapsis of 100-km altitude. This osculating eccentric-
ity is required to be in the WSB4 because of Eq. (3). The final
LO orbit is circular at a 100-km altitude. The circularization
AFis 0.648 km/s. A small maneuver is required to stabilize the
capture ellipse. Thus, the total AF, not including the Earth
injection, is 0.029 km/s. This transfer is shown in Fig. 1 on an
ecliptic plane projection and is described in more detail in Ref.
8. It is numerically demonstrated to be more energy optimal
than the Hohmann transfer, as shown in Sec. IV.

Application II: Hiten
In January 1990, ISAS launched two spacecraft, MUSES A

and B, which were attached.9'10 They were put into a highly
elliptic orbit about the Earth. MUSES B was intended to de-
tach and follow a Hohmann transfer to the moon in February.
It reached the moon; however, its mission was not successful
because it experienced mechanical problems. It was desired to
get MUSES A, renamed Hiten, into lunar orbit. Its propellant
budget did not permit Hiten to transfer to the moon and
achieve capture by Hohmann or bielliptic transfers. The trans-
fer in Ref. 3 utilizing ballistic capture was proposed as a way
to salvage the mission. It represents the first example of a
transfer utilizing the WSB method and is shown in Fig. 5.
Although not used, this transfer provided are important first
step toward the final design. It was obtained by modifying
Hiten's ellipse to fly by the moon to obtain arc $j. It began this
arc on August 3, 1990, and arrived at the moon on December
19, 1990, to complete arc $n- The arrival periapsis altitude was
100 km with an osculating eccentricity of 0.95 to be in the
WSB4. The total AF required was 0.044 km/s which was split
between a midcourse maneuver of 0.030 km/s on September
10, 1990, and 0.014 km/s required for Hiten to phase into the
beginning of arc $1.

The actual transfer flown was an updated version of this
transfer. It phased into arc 4>i on April 24, 1991, and arrived
at the moon on October 2, 1991. The midcourse maneuver of
0.030 km/s was brought to zero. The energy saved on account
of this transfer allowed Hiten to fly by the moon on this date
and perform a Lagrange point excursion. It arrived back at the
moon on February 15, 1992, where it was put into a lunar
capture. It crashed into the moon's surface on April 11, 1993.

IV. Comparison of Transfers
Four types of E-M transfers are compared: the Hohmann,

the biparabolic, the bielliptic, and the ballistic capture. For
notation they are referred to as H, BP, BE, and WSB, respec-
tively. The WSB transfer case is the one developed in applica-
tion I for LO. The four are compared in terms of the AF
required to inject a given pay load into a circular orbit about
the moon at an altitude of 100 km. It is assumed that each
transfer injects from a circular orbit about the Earth at an
altitude of 167 km on a launch vehicle that achieves a AF of
3.143 km/s for the given payload. This is the injection AFfor
an H transfer that is the smallest for all four cases. The H
transfer is used as the reference for comparison. The respective
differences of the Earth injection AF for the other transfers
from 3.143 km/s are, therefore, used in the comparison for the
AF budget toward calculating the AFto insert a spacecraft into
lunar orbit. The AF performance being measured is for the
spacecraft being injected into lunar orbit. The Earth injection
AFis not factored in because it is assumed that a launch vehicle
will provide up to 3.143 km/s. Any AF beyond this is provided
by the spacecraft that is used for the AF performance. It is also
assumed that each transfer is captured at the moon at an
altitude of 100 km at the ballistic capture state for LO where
e =0.95. A AFof 0.648 km/s achieves circularization.

The AF budget that is used to compare the transfers from H
consists of 1) difference from the H transfer Earth injection
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Table 3 Performance of WSB transfer compared with H, BP, and BE transfers

Transfer AF/-Hohmann AF/, km/s
WSB
BP
H
BE

0.018
0.089

0
0.018

AF midcourse, km/s AFc, km/s
0.029

0
0

0.287

0
0.073
0.20
0.052

Sum of AF,
km/s + 0.648

0.695
0.810
0.848
1.005

% Change
from H

-18
-4

0
+ 19

AF, 2) midcourse maneuver AF, and 3) AF used to insert into
a circular lunar orbit. These are summarized in Table 3.

In Table 3, the AF = AF} at Earth injection is computed
from the value of //3[$3(/0)] that yields the velocity F/ of
injection, and

AF7 = F7 - Fc

where Vc — circular velocity at h = l61 km. The AF = AFc
at capture in the H, BP, and BE cases is computed from the
approaching F^ according to the formula for a coplanar
transfer

where r - 100 4- rm , rm is the radius of the moon, and ju, = Gm4.
R and r are the apoapsis and periapsis, respectively, of the
capture ellipse about the moon. The H, BP, and BE transfers
are first estimated using relative two-body interactions and
then retargeted in the more complex solar system model de-
scribed earlier that uses and planetary ephemeris.

Table 3 also shows that the WSB transfer yields improve-
ments over H, BP, and BE by 18, 14, and 37%, respectively,
in terms of AF performance. For applications, the gain WSB
has over Hohniann in AF, with the subsequent mass savings
for the spacecraft, should be compared to its longer flight
time. Recent results reported on in Ref. 11 show that the
approximate savings in the total mass of the spacecraft that
can be inserted into lunar orbit is on the order of 10%. This
results in a higher discretionary payload that can be placed in
lunar orbit. This margin could have a bearing on launch vehi-
cle selection.

V. Conclusion
The existence of weak stability boundaries is numerically

demonstrated. They were first discovered in 1987.1 These
boundaries represent transition regions in the position- velocity
space where the gravitational interactions between the Earth,
moon, and sun tend to balance for a moving mass point such
as a spacecraft. Ballistic capture transfers from the Earth to
the moon can be constructed by connecting the weak stability
boundary of the Earth with the weak stability boundary of the
moon with time of flights on the order of 3-5 months. The
performance of the weak stability boundary transfer is shown
to exceed that of the Hohmann transfer by 18% in AF required
to insert a spacecraft into a circular lunar orbit. In addition, it
exceeds the performance of a biparabolic and bielliptic trans-
fer by 14 and 37%, respectively. Unlike a bielliptic transfer
which requires a maneuver of 0.287 km/s at its apoapsis,
assumed to be at 1.5 x 106 km, the corresponding maneuver of
the weak stability boundary transfer is nearly reduced to zero
by utilizing the Earth-sun weak stability boundary.

The weak stability boundary transfer has been successfully
demonstrated by the Japanese spacecraft Hiten which arrived

at the moon on October 2, 1991.9 Hiten would not have been
able to reach the moon and become captured by classical trans-
fers. The applicability of this transfer is also demonstrated for
the Lunar Observer Mission study.

Recent results have shown the applicability of the weak
stability boundary transfer to deliver science payloads to the
moon using a Pegasus rocket. This and other applications are
discussed in Refs. 9 and 11 (also, see Krish12).
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